Find the general solution of the equation $\sin 2 x+\cos x=0$
$\sin 2 x+\cos x=0$
$\Rightarrow 2 \sin x \cos x+\cos x=0$
$\Rightarrow \cos x(2 \sin x+1)=0$
$\Rightarrow \cos x=0 \quad$ or
$2 \sin x+1=0$
Now, $\cos x=0 \Rightarrow \cos x=(2 n+1) \frac{\pi}{2},$ where $n \in Z$
$2 \sin x+1=0$
$\Rightarrow \sin x=\frac{-1}{2}=-\sin \frac{\pi}{6}=\sin \left(\pi+\frac{\pi}{6}\right)=\sin \left(\pi+\frac{\pi}{6}\right)=\sin \frac{7 \pi}{6}$
$\Rightarrow x=n \pi+(-1)^{n} \frac{7 \pi}{6},$ where $n \in Z$
Therefore, the general solution is $(2 n+1) \frac{\pi}{2}$ or $n \pi+(-1)^{n} \frac{7 \pi}{6}, n \in Z$
The general solution of $a\cos x + b\sin x = c,$ where $a,\,\,b,\,\,c$ are constants
The number of values of $x$ for which $sin\,\, 2x + cos\,\, 4x = 2$ is
Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ be two sets. Then
The numbers of solution $(s)$ of the equation $\left( {1 - \frac{1}{{2\,\sin x}}} \right){\cos ^2}\,2x\, = \,2\,\sin x\, - \,3\, + \,\frac{1}{{\sin x}}$ in $[0,4\pi ]$ is
Number of principal solution of the equation $tan \,3x - tan \,2x - tan\, x = 0$, is