निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

तीन के प्रथम $10$ गुणज

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The first $10$ multiples of $3$ are

$3,6,9,12,15,18,21,24,27,30$

Here, number of observations, $n=10$

Mean,  $\bar x = \frac{{\sum\limits_{i = 1}^{10} {{x_i}} }}{{10}} = \frac{{165}}{{10}} = 16.5$

The following table is obtained.

${x_i}$ $\left( {{x_i} - \bar x} \right)$ ${\left( {{x_i} - \bar x} \right)^2}$
$3$ $-13.5$ $182.25$
$6$ $-10.5$ $110.25$
$9$ $-7.5$ $56.25$
$12$ $-4.5$ $20.25$
$15$ $-1.5$ $2.25$
$18$ $1.5$ $2.25$
$21$ $4.5$ $20.25$
$24$ $7.5$ $56.25$
$27$ $10.5$ $110.25$
$30$ $13.5$ $182.25$

Variance  $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^{10} {{{\left( {{x_1} - \bar x} \right)}^2} = } \frac{1}{{10}} \times 742.5 = 74.25$

$742.5$

Similar Questions

माना आंकडो

$X$ $1$ $3$ $5$ $7$ $9$
$(f)$ $4$ $24$ $28$ $\alpha$ $8$

का माध्य 5 है। यदि इन आंकडों के माध्य के सापेक्ष माध्य विचलन तथा प्रसरण क्रमशः $m$ तथा $\sigma^2$ हैं, तो $\frac{3 \alpha}{m+\sigma^2}$ बराबर है________

  • [JEE MAIN 2023]

यदि $\sum_{i=1}^{9}\left(x_{i}-5\right)=9$ तथा $\sum_{i=1}^{9}\left(x_{i}-5\right)^{2}=45$ है, तो नौ प्रेक्षणों $x_{1}, x_{2}, \ldots . ., x_{9}$ का मानक विचलन है

  • [JEE MAIN 2018]

निम्नलिखित बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए।

वर्ग $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
बारंबारता $5$ $8$ $15$ $16$ $6$

यदि आंकडों $65,68,58,44,48,45,60, \alpha, \beta, 60$ जहाँ $\alpha>\beta$ है, के माध्य तथा प्रसरण क्रमशः $56$ तथा $66.2$ है, तो $\alpha^2+\beta^2$ बराबर है ................

  • [JEE MAIN 2024]

$40$ प्रेक्षणों का माध्य तथा मानक विचलन क्रमशः $30$ तथा $5$ हैं। यह पाया गया कि इनमें से दो प्रेक्षण $12$ तथा $10$ गलती से लिखे गए। यदि गलती से लिखे दो प्रेक्षणों को हटाने के पश्चात् शेष आकड़ों का मानक विचलन $\sigma$ है, तो $38 \sigma^2$ बराबर है $...........$

  • [JEE MAIN 2022]