આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો : ત્રણના પ્રથમ $10$ ગુણિત
The first $10$ multiples of $3$ are
$3,6,9,12,15,18,21,24,27,30$
Here, number of observations, $n=10$
Mean, $\bar x = \frac{{\sum\limits_{i = 1}^{10} {{x_i}} }}{{10}} = \frac{{165}}{{10}} = 16.5$
The following table is obtained.
${x_i}$ | $\left( {{x_i} - \bar x} \right)$ | ${\left( {{x_i} - \bar x} \right)^2}$ |
$3$ | $-13.5$ | $182.25$ |
$6$ | $-10.5$ | $110.25$ |
$9$ | $-7.5$ | $56.25$ |
$12$ | $-4.5$ | $20.25$ |
$15$ | $-1.5$ | $2.25$ |
$18$ | $1.5$ | $2.25$ |
$21$ | $4.5$ | $20.25$ |
$24$ | $7.5$ | $56.25$ |
$27$ | $10.5$ | $110.25$ |
$30$ | $13.5$ | $182.25$ |
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^{10} {{{\left( {{x_1} - \bar x} \right)}^2} = } \frac{1}{{10}} \times 742.5 = 74.25$
$742.5$
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
${x_i}$ | $92$ | $93$ | $97$ | $98$ | $102$ | $104$ | $109$ |
${f_i}$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
સંખ્યાઓ $3,7, x$ અને $y(x>y)$ નો મધ્યક અને વિચરણ અનુક્રમે $5$ અને $10$ છે. તો ચાર સંખ્યાઓ $3+2 \mathrm{x}, 7+2 \mathrm{y}, \mathrm{x}+\mathrm{y}$ અને $x-y$ નો મધ્યક મેળવો.
ધારોકે $3 n$ સંખ્યાનું વિચરણ $4$ આપેલ છે. જો આ ગણમાં પ્રથમ $2 n$ સંખ્યાનો મધ્યક $6$ હોય અને બાકીની સંખ્યા $n$ નો મધ્યક $3$ છે. એક નવો ગણ બનાવીએ કે જેમાં પ્રથમ $2 n$ સંખ્યામાં $1$ ઉમેરીએ અને પછીની $n$ સંખ્યામાંથી $1$ બાદ કરીયે તો આ નવા ગણનું વિચરણ $k$ હોય તો $9 k$ મેળવો.
$8, 12, 13, 15,22$ અવલોકનોનું વિચરણ :
જો $\sum_{i=1}^{5}(x_i-10)=5$ અને $\sum_{i=1}^{5}(x_i-10)^2=5$ હોય તો અવલોકનો $2x_1 + 7, 2x_2 + 7, 2x_3 + 7, 2x_4 + 7$ અને $2x_5 + 7$ નો પ્રમાણિત વિચલન મેળવો