Find the mean and variance for the following frequency distribution.
Classes | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
Frequencies | $5$ | $8$ | $15$ | $16$ | $6$ |
Class | Frequency ${f_i}$ | Mid-point ${x_i}$ | ${y_i} = \frac{{{x_i} - 25}}{{10}}$ | ${y_i}^2$ | ${f_i}{y_i}$ | ${f_i}{y_i}^2$ |
$0-10$ | $5$ | $5$ | $-2$ | $4$ | $-10$ | $20$ |
$10-20$ | $8$ | $15$ | $-1$ | $1$ | $-8$ | $8$ |
$20-30$ | $15$ | $25$ | $0$ | $0$ | $0$ | $0$ |
$30-40$ | $16$ | $35$ | $1$ | $1$ | $16$ | $16$ |
$40-50$ | $6$ | $45$ | $2$ | $4$ | $12$ | $24$ |
$50$ | $10$ | $68$ |
Mean, $\bar x = A + \frac{{\sum\limits_{i = 1}^5 {{f_i}{y_i}} }}{N} \times h$
$ = 25 + \frac{{10}}{{50}} \times 10 = 25 + 2 = 27$
Variance, $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^5 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^5 {{f_i}{y_i}} } \right)}^2}} } \right]$
$=\frac{(10)^{2}}{(50)^{2}}\left[50 \times 68-(10)^{2}\right]$
$=\frac{1}{25}[3400-100]=\frac{3300}{25}$
$=132$
In a series of $2n$ observations, half of them equal to $a$ and remaining half equal to $-a$. If the standard deviation of the observations is $2$, then $|a|$ equals
If the mean of the frequency distribution
Class: | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
Frequency | $2$ | $3$ | $x$ | $5$ | $4$ |
is $28$ , then its variance is $........$.
A data consists of $n$ observations
${x_1},{x_2},......,{x_n}.$ If $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}} = 9n$ and $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}} = 5n,$ then the standard deviation of this data is
If the variance of the first $n$ natural numbers is $10$ and the variance of the first m even natural numbers is $16$, then $m + n$ is equal to
If the mean and variance of the following data:
$6,10,7,13, a, 12, b, 12$ are 9 and $\frac{37}{4}$ respectively, then $(a-b)^{2}$ is equal to: