Find the mean and variance of the frequency distribution given below:
$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$
$\begin{array}{|c|c|c|c|c|} \hline x & f _{ i } & x _{ i } & f x _{ i } & f x _{ i }^{ 2 } \\ \hline 1-3 & 6 & 2 & 12 & 24 \\ \hline 3-5 & 4 & 4 & 16 & 64 \\ \hline 5-7 & 5 & 6 & 30 & 180 \\ \hline 7-10 & 1 & 8.5 & 8.5 & 72.25 \\ \hline \text { Total } & n=16 & & \Sigma f_{i} x_{i}=66.5 & \Sigma f_{i}{ }_{i}^{2}=340.25 \\ \hline \end{array}$
$\therefore \quad$ Mean $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{66.5}{16}=4.13$
And variance $=\sigma^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}\right)^{2}=\frac{340.25}{16}-(4.13)^{2}$
$\quad=21.2656-17.0569=4.21$
Let $n \geq 3$. A list of numbers $x_1, x, \ldots, x_n$ has mean $\mu$ and standard deviation $\sigma$. A new list of numbers $y_1, y_2, \ldots, y_n$ is made as follows $y_1=\frac{x_1+x_2}{2}, y_2=\frac{x_1+x_2}{2}$ and $y_j=x_j$ for $j=3,4, \ldots, n$.
The mean and the standard deviation of the new list are $\hat{\mu}$ and $\hat{\sigma}$. Then, which of the following is necessarily true?
If $\sum_{i=1}^{5}(x_i-10)=5$ and $\sum_{i=1}^{5}(x_i-10)^2=5$ then standard deviation of observations $2x_1 + 7, 2x_2 + 7, 2x_3 + 7, 2x_4 + 7$ and $2x_5 + 7$ is equal to-
Determine the mean and standard deviation for the following distribution:
$\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} \hline \text { Marks } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ \hline \text { Frequency } & 1 & 6 & 6 & 8 & 8 & 2 & 2 & 3 & 0 & 2 & 1 & 0 & 0 & 0 & 1 \\ \hline \end{array}$
The $S.D$ of $15$ items is $6$ and if each item is decreased or increased by $1$, then standard deviation will be
Find the mean and variance for the data
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |