समीकरण $|1-i|^{x}=2^{x}$ के शून्येत्तर पूर्णाक मूलों की संख्या ज्ञात कीजिए।
$|1-i|^{x}=2^{x}$
$\Rightarrow(\sqrt{1^{2}+(-1)^{2}})^{x}=2^{x}$
$\Rightarrow(\sqrt{2})^{x}=2^{x}$
$\Rightarrow 2^{x / 2}=2^{x}$
$\Rightarrow \frac{x}{2}=x$
$\Rightarrow x=2 x$
$\Rightarrow 2 x-x=0$
$\Rightarrow x=0$
Thus, $0$ is the only integral solution of the given equation. Therefore, the number of nonzero integral solutions of the given equation is $0 .$
माना $A=\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1-i \sin \theta}\right.$ मात्र काल्पनिक $\}$ तो $\mathrm{A}$ में अवयवों का योग है
${z_1}$ एक सम्मिश्र संख्या है जिसके लिये $|{z_1}| = 1$ तथा ${z_2}$कोई अन्य सम्मिश्र संख्या है, तब $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $
$0$ का कोणांक है
किसी शून्येत्तर (non-zero) सम्मिश्र संख्या (complex number) $z$ के लिये, माना कि $\arg (z)$ इसके मुख्य कोणांक (principal argument) को दर्शाता है, जहाँ - $\pi<\arg (z) \leq \pi \mid$ तब निम्नलिखित में से कौन सा
(से) कथन असत्य है (हैं)?
$(A)$ $\arg (-1-i)=\frac{\pi}{4}$, जहाँ $i=\sqrt{-1}$
$(B)$ फलन (function) $f: R \rightarrow(-\pi, \pi]$, जो सभी $t \in R$ के लिये $f(t)=\arg (-1+i t)$ के द्वारा परिभाषित है, $R$ के सभी बिंदुओं पर संतत (continuous) है, जहाँ $i=\sqrt{-1}$
$(C)$ किन्ही भी दो शून्येत्तर सम्मिश्र संख्याओं $z_1$ और $z_2$ के लिए $\arg \left(\frac{z_1}{z_2}\right)-\arg \left(z_1\right)+\arg \left(z_2\right)$
$2 \pi$ का एक पूर्णांक गुणज (integer multiple) है
$(D)$ किन्ही भी तीन दी गयी भिन्न (distinct) सम्मिश्र संख्याओं $z_1, z_2$ और $z_3$ के लिये, प्रतिबंध (condition) $\arg \left(\frac{\left(z-z_1\right)\left(z_2-z_3\right)}{\left(z-z_3\right)\left(z_2-z_1\right)}\right)=\pi$, को संतुष्ट करने वाले बिंदु $z$ का बिंदुपथ (locus) एक सरल रेखा (straight line) पर स्थित है
यदि ${(\sqrt 8 + i)^{50}} = {3^{49}}(a + ib)$, तब ${a^2} + {b^2}$ =