यदि $\sqrt 3  + i = (a + ib)(c + id)$, तब ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ का मान है

  • A

    $\frac{\pi }{3} + 2n\pi ,n \in I$

  • B

    $n\pi + \frac{\pi }{6},n \in I$

  • C

    $n\pi - \frac{\pi }{3},n \in I$

  • D

    $2n\pi - \frac{\pi }{3},n \in I$

Similar Questions

$|2z - 1| + |3z - 2|$का न्यूनतम मान होगा

सम्मिश्र संख्या $z = \sin \alpha  + i(1 - \cos \alpha )$का कोणांक हैं

यदि समुच्चय $\left\{\operatorname{Re}\left(\frac{\mathrm{z}-\overline{\mathrm{z}}+\mathrm{z} \overline{\mathrm{z}}}{2-3 \mathrm{z}+5 \overline{\mathrm{z}}}\right): \mathrm{z} \in \mathbb{C}, \operatorname{Re}(\mathrm{z})=3\right\}$ अंतराल $(\alpha, \beta]$ के बराबर है, तो $24(\beta-\alpha)$ का मान है:

  • [JEE MAIN 2023]

यदि $\frac{{z - i}}{{z + i}}(z \ne  - i)$ एक पूर्णत: अधिकल्पित संख्या है, तब $z.\bar z$ बराबर है

माना $\alpha=8-14 i, A=\left\{z \in \mathbb{C}: \frac{\alpha z-\bar{\alpha} \bar{z}}{z^2-(\bar{z})^2-112 i}=1\right\}$ तथा $B=\{z \in \mathbb{C}:|z+3 i|=4\}$ हैं तो $\sum_{\mathrm{z} \in \mathrm{A} \cap \mathrm{B}}(\operatorname{Re} z-\operatorname{Im} z)$ बराबर ___________ है।

  • [JEE MAIN 2023]