Find the principal and general solutions of the equation $\sec x=2$
$\sec x=2$
It is known that $\sec \frac{\pi}{3}=2$ and $\sec \frac{5 \pi}{3}=\sec \left(2 \pi-\frac{\pi}{3}\right)=\sec \frac{\pi}{3}=2$
Therefore, the principal solutions are $x=\frac{\pi}{3}$ and $\frac{5 \pi}{3}$ Now, sec $x=\sec \frac{\pi}{3}$
$\Rightarrow \cos x=\cos \frac{\pi}{3} \quad\left[\sec x=\frac{1}{\cos x}\right]$
$\Rightarrow 2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$
Therefore, the general solution is $x=2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$
If $\alpha ,$ $\beta$ are different values of $x$ satisfying $a\cos x + b\sin x = c,$ then $\tan {\rm{ }}\left( {\frac{{\alpha + \beta }}{2}} \right) = $
The number of values of $x$ for which $sin\,\, 2x + cos\,\, 4x = 2$ is
If ${\sin ^2}\theta - 2\cos \theta + \frac{1}{4} = 0,$ then the general value of $\theta $ is
Find the value of $\tan \frac{\pi}{8}$
If $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in [0,2 \pi ]$ , then maximum integral value of $x$ is