Trigonometrical Equations
easy

निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए

$\sec x=2$

Option A
Option B
Option C
Option D

Solution

$\sec x=2$

It is known that $\sec \frac{\pi}{3}=2$ and $\sec \frac{5 \pi}{3}=\sec \left(2 \pi-\frac{\pi}{3}\right)=\sec \frac{\pi}{3}=2$

Therefore, the principal solutions are $x=\frac{\pi}{3}$ and $\frac{5 \pi}{3}$ Now, sec $x=\sec \frac{\pi}{3}$

$\Rightarrow \cos x=\cos \frac{\pi}{3} \quad\left[\sec x=\frac{1}{\cos x}\right]$

$\Rightarrow 2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$

Therefore, the general solution is $x=2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.