આપેલ સમીકરણના મુખ્ય અને વ્યાપક ઉકેલ શોધો : $\sec x=2$
$\sec x=2$
It is known that $\sec \frac{\pi}{3}=2$ and $\sec \frac{5 \pi}{3}=\sec \left(2 \pi-\frac{\pi}{3}\right)=\sec \frac{\pi}{3}=2$
Therefore, the principal solutions are $x=\frac{\pi}{3}$ and $\frac{5 \pi}{3}$ Now, sec $x=\sec \frac{\pi}{3}$
$\Rightarrow \cos x=\cos \frac{\pi}{3} \quad\left[\sec x=\frac{1}{\cos x}\right]$
$\Rightarrow 2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$
Therefore, the general solution is $x=2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$
જો $\sin \theta + 2\sin \phi + 3\sin \psi = 0$ અને $\cos \theta + 2\cos \phi + 3\cos \psi = 0$ ,હોય તો $\cos 3\theta + 8\cos 3\phi + 27\cos 3\psi = $
સમીકરણ ${2^{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi \over 4}}} \right)}}$ $- 2$${\left( {0.25} \right)^{\frac{{{{\sin }^2}\,\left( {x\,\, - \,\,{\textstyle{\pi \over 4}}} \right)}}{{\cos \,\,2x}}}}$ $+ 1 = 0$ નો ઉકેલગણ.......... છે
$\theta $ ની વ્યાપટ કિમત મેળવો કે જેથી બંને સમીકરણો $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ નું સમાધાન થાય. $(n \in I)$
સમીકરણ ${\cos ^2}\theta + \sin \theta + 1 = 0$ નો ઉકેલ . . . . અંતરાલમાં આવેલ છે.
$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ ની કિમત મેળવો