Find the principal and general solutions of the equation $\cot x=-\sqrt{3}$
$\cot x=-\sqrt{3}$
It is known that $\cot \frac{\pi}{6}=\sqrt{3}$
$\therefore \cot \left(\pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$ and $\cot \left(2 \pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$
i.e., $\cot \frac{5 \pi}{6}=-\sqrt{3}$ and $\cot \frac{11 \pi}{6}=-\sqrt{3}$
Therefore, the principal solutions are $x=\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$
Now, $\cot x=\cot \frac{5 \pi}{6}$
$\Rightarrow \tan x=\tan \frac{5 \pi}{6}$ $\left[\cot x=\frac{1}{\tan x}\right]$
$\Rightarrow x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$
Therefore, the general solution is $x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$
Let $f(x) = sinx + 2sin^2x + 3sin^3x + 4sin^4x+....\infty $ , then number of solution $(s)$ of equation $f(x) = 2$ in $x \in \left[ { - \pi ,\pi } \right] - \left\{ { \pm \frac{\pi }{2}} \right\}$ is
The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :
The numbers of solution $(s)$ of the equation $\left( {1 - \frac{1}{{2\,\sin x}}} \right){\cos ^2}\,2x\, = \,2\,\sin x\, - \,3\, + \,\frac{1}{{\sin x}}$ in $[0,4\pi ]$ is
Find the principal and general solutions of the equation $\sec x=2$
The most general value of $\theta $ satisfying the equations $\tan \theta = - 1$ and $\cos \theta = \frac{1}{{\sqrt 2 }}$ is