Find the principal and general solutions of the equation $\cot x=-\sqrt{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\cot x=-\sqrt{3}$

It is known that $\cot \frac{\pi}{6}=\sqrt{3}$

$\therefore \cot \left(\pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$ and $\cot \left(2 \pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$

i.e., $\cot \frac{5 \pi}{6}=-\sqrt{3}$ and $\cot \frac{11 \pi}{6}=-\sqrt{3}$

Therefore, the principal solutions are $x=\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$

Now, $\cot x=\cot \frac{5 \pi}{6}$

$\Rightarrow \tan x=\tan \frac{5 \pi}{6}$       $\left[\cot x=\frac{1}{\tan x}\right]$

$\Rightarrow x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$

Therefore, the general solution is $x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$

Similar Questions

If ${\sec ^2}\theta = \frac{4}{3}$, then the general value of $\theta  $ is

The general solution of $\frac{{\tan \,2x\, - \,\tan \,x}}{{1\, + \,\tan \,x\,\tan \,2x}}\, = \,1$ is 

The general value of $\theta $satisfying the equation $2{\sin ^2}\theta - 3\sin \theta - 2 = 0$ is

If $\alpha ,\,\beta ,\,\gamma $ and $\delta $ are the solutions of the equation $\tan \left( {\theta  + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ , no two of which have equal tangents, then the value of $tan\, \alpha  + tan\, \beta + tan\, \gamma + tan\, \delta $ is

Find the general solution of the equation $\cos 4 x=\cos 2 x$