Find the real numbers $x$ and $y$ if $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$
Let $z=(x-i y)(3+5 i)$
$z=3 x+5 x i-3 y i-5 y i^{2}=3 x+5 x i-3 y i+5 y=(3 x+5 y)+i(5 x-3 y)$
$\therefore \bar{z}=(3 x+5 y)-i(5 x-3 y)$
It is given that, $\bar{z}=-6-24 i$
$\therefore(3 x+5 y)-i(5 x-3 y)=-6-24 i$
Equating real and imaginary parts, we obtain
$3 x+5 y=-6$.....$(i)$
$5 x-3 y=24$....$(ii)$
Multiplying equation $(i)$ by $3$ and equation $(ii)$ by $5$ and then adding them, we obtain
$9 x+15 y=-18$
${25 x-15 y=120}$
$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_$
${34 x=102}$
$\therefore x=\frac{102}{34}=3$
Putting the value of $x$ in equation $(i),$ we obtain
$3(3)+5 y=-6$
$\Rightarrow 5 y=-6-9=-15$
$\Rightarrow y=-3$
Thus, the values of $x$ and $y$ are $3 $ and $-3$ respectively.
The minimum value of $|2z - 1| + |3z - 2|$is
If $z=x+i y, x y \neq 0$, satisfies the equation $z^2+i \bar{z}=0$, then $\left|z^2\right|$ is equal to:
The modulus and amplitude of $\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ are
The maximum value of $|z|$ where z satisfies the condition $\left| {z + \frac{2}{z}} \right| = 2$ is
If $z$ is a complex number, then $(\overline {{z^{ - 1}}} )(\overline z ) = $