यदि $(x-i y)(3+5 i),-6-24 i$ की संयुग्मी है तो वास्तविक संख्याएँ $x$ और $y$ ज्ञात कीजिए।
Let $z=(x-i y)(3+5 i)$
$z=3 x+5 x i-3 y i-5 y i^{2}=3 x+5 x i-3 y i+5 y=(3 x+5 y)+i(5 x-3 y)$
$\therefore \bar{z}=(3 x+5 y)-i(5 x-3 y)$
It is given that, $\bar{z}=-6-24 i$
$\therefore(3 x+5 y)-i(5 x-3 y)=-6-24 i$
Equating real and imaginary parts, we obtain
$3 x+5 y=-6$.....$(i)$
$5 x-3 y=24$....$(ii)$
Multiplying equation $(i)$ by $3$ and equation $(ii)$ by $5$ and then adding them, we obtain
$9 x+15 y=-18$
${25 x-15 y=120}$
$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_$
${34 x=102}$
$\therefore x=\frac{102}{34}=3$
Putting the value of $x$ in equation $(i),$ we obtain
$3(3)+5 y=-6$
$\Rightarrow 5 y=-6-9=-15$
$\Rightarrow y=-3$
Thus, the values of $x$ and $y$ are $3 $ and $-3$ respectively.
यदि $\alpha $ व $\beta $ भिन्न सम्मिश्र संख्याएँ इस प्रकार हैं कि $|\beta | = 1$, तब $\left| {\frac{{\beta - \alpha }}{{1 - \alpha \beta }}} \right|$ =
$\frac{{1 + \sqrt 3 i}}{{\sqrt 3 + 1}}$का कोणांक है
किसी भी सम्मिश्र संख्या $w =c+i d$ के लिए, मान लीजिए कि $\arg ( w ) \in(-\pi, \pi]$, जहाँ $i=\sqrt{-1}$ है। मान लीजिए कि $\alpha$ और $\beta$ ऐसी वास्तविक संख्याएँ है कि $\arg \left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$ को सन्तुष्ट करने वाली सभी सम्मिश्र संख्याओं $z = x + iy$ के लिए, क्रमित युग्म $( x , y )$ वृत्त
$x ^2+ y ^2+5 x -3 y +4=0 .$ पर स्थित है। तब निम्न कथनों में से कौन सा (से) सत्य है (है)?
$(A)$ $\alpha=-1$ $(B)$ $\alpha \beta=4$ $(C)$ $\alpha \beta=-4$ $(D)$ $\beta=4$
यदि $arg\,z < 0$ तब $arg\,( - z) - arg\,(z)$ का मान होगा
$ - 1 - i\sqrt 3 $ का कोणांक है