If $z = 1 - \cos \alpha + i\sin \alpha $, then $amp \ z$=

  • A

    $\frac{\alpha }{2}$

  • B

    $ - \frac{\alpha }{2}$

  • C

    $\frac{\pi }{2} + \frac{\alpha }{2}$

  • D

    $\frac{\pi }{2} - \frac{\alpha }{2}$

Similar Questions

If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to

  • [IIT 1979]

The argument of the complex number $\frac{{13 - 5i}}{{4 - 9i}}$is

If $Arg(z)$ denotes principal argument of a complex number $z$, then the value of expression $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ is

Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of

$(\bar{z})^2+\frac{1}{z^2}$

are integers, then which of the following is/are possible value($s$) of $|z|$ ?

  • [IIT 2022]

If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if