પ્રથમ પ્રાકૃતિક $n$ સંખ્યાઓ માટે પ્રમાણિત વિચલન મેળવો
$ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x_{i} & 1 & 2 & 3 & 4 & 5 & \ldots & \ldots & n \\ \hline x_{i}^{2} & 1 & 4 & 9 & 16 & 25 & \ldots & \ldots & n^{2} \\ \hline \end{array}$
Now, $\quad \Sigma x_{i}=1+2+3+4+\ldots+n=\frac{n(n+1)}{2}$
and $\Sigma x_{i}^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
$\therefore \quad \alpha=\sqrt{\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}}=\sqrt{\frac{n(n+1)(2 n+1)}{6 n}-\frac{n^{2}(n+1)^{2}}{4 n^{2}}}$
$=\sqrt{\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4}}=\sqrt{\frac{2\left(2 n^{2}+3 n+1\right)-3\left(n^{2}+2 n+1\right)}{12}}$
$=\sqrt{\frac{4 n^{2}+6 n+2-3 n^{2}-6 n-3}{12}}=\sqrt{\frac{n^{2}-1}{12}}$
$8$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $10$ અને $13.5$ છે જો તેમાંથી $6$ અવલોકનો $5,7,10,12,14,15,$ હોય તો બાકી રહેલા બીજા બે અવલોકનોનો ધન તફાવત ........... થાય
વિધાન $1$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વિચરણ $\frac{{{n^2} - 1}}{3}$ થાય
વિધાન $2$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો સરવાળો $n^2$ અને પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વર્ગોનો સરવાળો $\frac{{n\left( {4{n^2} + 1} \right)}}{3}$ થાય
એક વિદ્યાર્થીએ $100$ અવલોકનોનો મધ્યક $40$ અને પ્રમાણિત વિચલન $5.1$ મેળવ્યા છે, પરંતુ એણે ભૂલથી એક અવલોકન $40$ ને બદલે $50$ લઈ લીધું હતું, તો સાચો મધ્યક અને પ્રમાણિત વિચલન શું છે?
ધારો કે વસ્તી $A $ એ $100 $ અવલોકનો $101, 102, ..... 200$ અને બીજી વસ્તી $B$ એ $100 $ અવલોકનો $151, 152, ...... 250 $ ધરાવે છે. જો $V_A $ અને $V_B$ એ અનુક્રમે બંને વસ્તીઓનું વિચરણ દર્શાવે તો $V_A / V_B$ શું થાય ?
$6$ અવલોકનો $a$, $b,$ $68,$ $44,$ $48,$ $60$ ના મધ્યક અને વિચરણ અનુક્કમે $55$ અને $194$ છે. જો $a > b,$ તો $a +$ $3 b=$..........................