અહી $\mathrm{X}$ એ વિતરણનું યાર્દચ્છિક ચલ છે.
$\mathrm{x}$ | $-2$ | $-1$ | $3$ | $4$ | $6$ |
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{5}$ | $\mathrm{a}$ | $\frac{1}{3}$ | $\frac{1}{5}$ | $\mathrm{~b}$ |
જો મધ્યક $X$ એ $2.3$ અને $X$ નું વિચરણ $\sigma^{2}$ હોય તો $100 \sigma^{2}$ ની કિમંત મેળવો.
$781$
$100$
$529$
$1310$
ધારોકે $8$ સંખ્યાઓ $x, y, 10,12,6,12,4,8$ ના મધ્યક અને વિયરણ અનુક્રમે $9$ અને $9.25$ છે. જો $x > y$ હોય, તો $3 x-2 y=.........$.
અમુક માહિતી માટે મધ્યક અને પ્રમાણિત વિચલન આપેલ છે જે નીચે મુજબ છે
અવલોકનની સંખ્યા $=25,$ મધ્યક $=18.2$ અને પ્રમાણિત વિચલન $=3.25$
વધારામાં બીજા 15 અવલોકનો $x_{1}, x_{2}, \ldots, x_{15},$ ગણ પણ હાજર છે જેના માટે $\sum_{i=1}^{15} x_{i}=279$ અને $\sum_{i=1}^{15} x_{i}^{2}=5524$ છે તો બધા 40 અવલોકનનો પ્રમાણિત વિચલન મેળવો
જો સંખ્યાઓ $ 2,3,a $અને $11$ નું પ્રમાણિત વિચલન $3.5$ હોય ,તો નીચેનામાંથી કયું સત્ય છે?
આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.
વર્ગ |
$0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
આવૃત્તિ |
$2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |
ધારે કે કોઈ વર્ગમાં $7$ વિદ્યાર્થીઓ છે. આ વિદ્યાર્થીઓના ગણીત વિષયની પરીક્ષાના ગુણોની સરેેારાશ $62$ છે. તથા વિચરણ $20$ છે. જે $50$ કરતાં ઓછા ગુણ મેળવે તો વિદ્યાર્થી આ પરિક્ષામાં નાપાસ માનવામાં આવે, તો ખરાબમાં ખરાબ સ્થિતિમાં નાપાસ પનાર વિદ્યાર્થીઓની સંખ્યા...........છે.