- Home
- Standard 11
- Mathematics
જો $n$ અવલોકનો ${x_1}\;,\;{x_2}\;,\;.\;.\;.\;,{x_n}$ છે અને તેમાંનો સમાંતર મધ્યક $\bar x$ છે અને ${\sigma ^2}$ એ વિચરણ છે.
વિધાન $1$ : $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ નું વિચરણ $4{\sigma ^2}$ છે.
વિધાન $2$: $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ નો સમાંતર મધ્યક $4\bar x$ છે.
વિધાન $- 1$ ખોટું છે. વિધાન$- 2$ સાચું છે.
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી નથી.
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી છે
વિધાન $- 1$ સાચું છે. વિધાન $- 2$ ખોટું છે.
Solution
$x_{1}, x_{2}, x_{3}, \ldots . x_{n}, \mathrm{A.M} .=\bar{x}, \text { Variance }=\sigma^{2}$
Statement $2 : A.M.$ of $2 x_{1}, 2 x_{2}, \ldots ., 2 x_{n}$
$=\frac{2\left(x_{1}+x_{2}+\ldots . .+x_{n}\right)}{n}=2 \bar{x}$
Given $A . M .=4 \bar{x} $
$ \therefore$ Statement $2$ is false.
Similar Questions
આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.
વર્ગ |
$0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
આવૃત્તિ |
$2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |