જો $n$ અવલોકનો ${x_1}\;,\;{x_2}\;,\;.\;.\;.\;,{x_n}$ છે અને તેમાંનો સમાંતર મધ્યક $\bar x$ છે અને ${\sigma ^2}$ એ વિચરણ છે.

વિધાન $1$ : $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ નું વિચરણ $4{\sigma ^2}$ છે.

વિધાન $2$: $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ નો સમાંતર મધ્યક $4\bar x$ છે.

  • [AIEEE 2012]
  • A

    વિધાન $- 1$ ખોટું છે. વિધાન$- 2$ સાચું છે.

  • B

    વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી નથી.

  • C

    વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી છે 

  • D

    વિધાન $- 1$ સાચું છે. વિધાન $- 2$ ખોટું છે.

Similar Questions

બે માહિતી ગણ પૈકી દરેકનું કદ $5$ છે. જો વિચરણો $4$  એ $5$ આપેલું હોય અને તેમને અનુરૂપ મધ્યકો અનુક્રમે $2$ અને $4$ હોય તો, સંયુક્ત માહિતીના ગણનું વિચરણ કેટલું થાય ?

આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :

${x_i}$ $92$ $93$ $97$ $98$ $102$ $104$ $109$
${f_i}$ $3$ $2$ $3$ $2$ $6$ $3$ $3$

જો વિતરણનું દરેક અવલોકન જેનું પ્રમાણિત વિચલન $\sigma$, એ $\lambda$, જેટલું વધતું હોય તો નવા અવલોકનોનું વિચરણ શોધો.

$30$ વસ્તુઓને અવલોકવામાં આવે છે જેમાંથી $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} - d$, $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} $ અને બાકી રહેલ $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} + d$ છે જો આપેલ માહિતીનો  વિચરણ $\frac {4}{3}$  હોય તો $\left| d \right|$ = 

  • [JEE MAIN 2019]

$5$ અવલોકનોનો મધ્યક $7$ છે જો આ અવલોકનોમાંથી ચાર અવલોકનો $6, 7, 8, 10$ હોય તો બધા અવલોકનોનો વિચરણ મેળવો. 

  • [JEE MAIN 2013]