Find the sum of $n$ terms in the geometric progression $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given $G.P.$ is $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots$

Here, $a=\sqrt{7}$ and $r=\frac{\sqrt{21}}{7}=\sqrt{3}$

$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

$\Rightarrow S_{n}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}}$

$\Rightarrow S_{n}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}}$

$\Rightarrow S_{n}=\frac{\sqrt{7}(\sqrt{3}+1)\left[1-(\sqrt{3})^{n}\right]}{1-3}$

$\Rightarrow S_{n}=\frac{-\sqrt{7}(\sqrt{3}+1)\left[1-(\sqrt{3})^{n}\right]}{2}$

$\Rightarrow \frac{\sqrt{7}(1+\sqrt{3})}{2}\left[(3)^{\frac{n}{2}}-1\right]$

Similar Questions

The product $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}} \cdot \ldots .$ to $\infty$ is equal to

  • [JEE MAIN 2020]

The number $111..............1$ ($91$ times) is a

If five $G.M.’s$ are inserted between $486$ and $2/3$ then fourth $G.M.$ will be

Let $a _1, a _2, a _3, \ldots$ be a $G.P.$ of increasing positive numbers. Let the sum of its $6^{\text {th }}$ and $8^{\text {th }}$ terms be $2$ and the product of its $3^{\text {rd }}$ and $5^{\text {th }}$ terms be $\frac{1}{9}$. Then $6\left( a _2+\right.$ $\left.a_4\right)\left(a_4+a_6\right)$ is equal to

  • [JEE MAIN 2023]

If $2(y - a)$ is the $H.M.$ between $y - x$ and $y - z$, then $x - a,\;y - a,\;z - a$ are in