गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

$\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots n$ पदों तक

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given $G.P.$ is $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots$

Here, $a=\sqrt{7}$ and $r=\frac{\sqrt{21}}{7}=\sqrt{3}$

$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

$\Rightarrow S_{n}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}}$

$\Rightarrow S_{n}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}}$

$\Rightarrow S_{n}=\frac{\sqrt{7}(\sqrt{3}+1)\left[1-(\sqrt{3})^{n}\right]}{1-3}$

$\Rightarrow S_{n}=\frac{-\sqrt{7}(\sqrt{3}+1)\left[1-(\sqrt{3})^{n}\right]}{2}$

$\Rightarrow \frac{\sqrt{7}(1+\sqrt{3})}{2}\left[(3)^{\frac{n}{2}}-1\right]$

Similar Questions

गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

एक गुणोत्तर श्रेणी के तीन पदों का योगफल $\frac{39}{10}$ हैं तथा उनका गुणनफल $1$ है। सार्व अनुपात तथा पदों को ज्ञात कीजिए

यदि $a,\,b,\,c$ समान्तर श्रेणी में तथा ${a^2},\,{b^2},{c^2}$ हरात्मक श्रेणी में हों, तो   

$0.\mathop {234}\limits^{\,\,\, \bullet \,\, \bullet } $ का मान होगा

एक गुणोत्तर श्रेणी में पदों की संख्या सम है। यदि सभी पदों का योगफल विषम स्थान वाले पदों के योगफल का $5$ गुना है, तब सार्व-अनुपात होगा

एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने का निर्देश देता है, तथा उनसे यह भी करने को कहता हैं कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस शंखला को जारी रखे। यह कल्पना करके कि शृखला न टूटे तो $8$ वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च $50$ पैसे है।