गुणोत्तर श्रेणी $1+\frac{2}{3}+\frac{4}{9}+\ldots$ के प्रथम $n$ पदों का योग तथा प्रथम $5$ पदों का योगफल ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here $a=1$ and $r=\frac{2}{3} .$ Therefore

$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{\left[1-\left(\frac{2}{3}\right)^{n}\right]}{1-\frac{2}{3}}=3\left[1-\left(\frac{2}{3}\right)^{n}\right]$

In particular, $S_{5}=3\left[1-\left(\frac{2}{3}\right)^{5}\right]=3 \times \frac{211}{243}=\frac{211}{81}$

Similar Questions

यदि किसी गुणोत्तर श्रेणी के तीन पदों का योग $19$ एवं गुणनफल $216$ हो, तो श्रेणी का सार्व-अनुपात होगा

श्रेणी $0.7,0.77,0.777, \ldots \ldots$, के प्रथम $20$ पदों का योग है

  • [JEE MAIN 2013]

यदि किसी गुणोत्तर श्रेणी के अनन्त पदों का योग $x$ है एवं पदों का वर्ग करने पर योग $y$ हो जाता है, तो श्रेणी का सार्व-अनुपात होगा

एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल $-4$ है तथा $5$ वाँ पद तृतीय पद का $4$ गुना है।

एक गुणोत्तर श्रेणी में तीसरा पद $24$ तथा $6$ वाँ पद $192$ है, तो $10$ वाँ पद ज्ञात कीजिए।