गुणोत्तर श्रेणी $1+\frac{2}{3}+\frac{4}{9}+\ldots$ के प्रथम $n$ पदों का योग तथा प्रथम $5$ पदों का योगफल ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here $a=1$ and $r=\frac{2}{3} .$ Therefore

$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{\left[1-\left(\frac{2}{3}\right)^{n}\right]}{1-\frac{2}{3}}=3\left[1-\left(\frac{2}{3}\right)^{n}\right]$

In particular, $S_{5}=3\left[1-\left(\frac{2}{3}\right)^{5}\right]=3 \times \frac{211}{243}=\frac{211}{81}$

Similar Questions

यदि किसी गुणोत्तर श्रेणी के तीन पदों का योग $19$ एवं गुणनफल $216$ हो, तो श्रेणी का सार्व-अनुपात होगा

माना ${a_n}$ धनात्मक संख्याओं की गुणोत्तर श्रेणी का $n$ वाँ पद है। माना $\sum\limits_{n = 1}^{100} {{a_{2n}}} = \alpha $ व $\sum\limits_{n = 1}^{100} {{a_{2n - 1}}} = \beta $ इस प्रकार हैं कि $\alpha \ne \beta $, तो सार्वअनुपात है

  • [IIT 1992]

अनुक्रम $3 + 33 + 333 + ....$ के $n$ पदों का योग होगा

अनुक्रम का कौन सा पद.

$2,2 \sqrt{2}, 4, \ldots ; 128$ है ?

 

श्रेणी $5.05 + 1.212 + 0.29088 + ...\,\infty $ का योग होगा