Find the sum of the sequence $7,77,777,7777, \ldots$ to $n$ terms.
This is not a $G.P.,$ however, we can relate it to a $G.P.$ by writing the terms as
${S_n} = 7 + 77 + 777 + 7777 + \ldots {\rm{ }}$ to $ n $ terms
$ = \frac{7}{9}[9 + 99 + 999 + 9999 + \ldots $ to $ n $ term $]$
$ = \frac{7}{9}[(10 - 1) + \left( {{{10}^2} - 1} \right) + \left( {{{10}^3} - 1} \right) + \left( {{{10}^4} - 1} \right) + \ldots n{\rm{ }}$ term $]$
$=\frac{7}{9}[(10+10^{2}+10^{3}+\ldots n \text { terms })$
$-(1+1+1+\ldots n \text { terms })]$
$=\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]=\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
The sum of infinite terms of the geometric progression $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ is
If $x$ is added to each of numbers $3, 9, 21$ so that the resulting numbers may be in $G.P.$, then the value of $x$ will be
The sum of infinite terms of a $G.P.$ is $x$ and on squaring the each term of it, the sum will be $y$, then the common ratio of this series is
Find the sum to indicated number of terms in each of the geometric progressions in $\left.x^{3}, x^{5}, x^{7}, \ldots n \text { terms (if } x \neq\pm 1\right)$
If ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (where $i = \sqrt{-1}),$ then value of $x_1.x_2.x_3......\infty ,$ is :-