- Home
- Standard 11
- Mathematics
$7,77,777,7777, \ldots$ નાં $n$ પદોનો સરવાળો શોધો.
$\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
$\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
$\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
$\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
Solution
This is not a $G.P.,$ however, we can relate it to a $G.P.$ by writing the terms as
${S_n} = 7 + 77 + 777 + 7777 + \ldots {\rm{ }}$ to $ n $ terms
$ = \frac{7}{9}[9 + 99 + 999 + 9999 + \ldots $ to $ n $ term $]$
$ = \frac{7}{9}[(10 – 1) + \left( {{{10}^2} – 1} \right) + \left( {{{10}^3} – 1} \right) + \left( {{{10}^4} – 1} \right) + \ldots n{\rm{ }}$ term $]$
$=\frac{7}{9}\left[\left(10+10^{2}+10^{3}+\ldots n \text { terms }\right)-(1+1+1+\ldots n \text { terms })\right]$
$=\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]=\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$