$8,88,888,8888 \ldots$ શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો શોધો.
The given sequence is $8,88,888,8888 \ldots$
This sequence is not a $G.P.$ However, it can be changed to $G.P.$ by writing the terms as
$S_{n}=8+88+888+8888+\ldots \ldots$ to $n$ terms
$=\frac{8}{9}[9+99+999+9999+\ldots \ldots . . $ to $ n $ terms $]$
$=\frac{8}{9}\left[\left(10+10^{2}+\ldots \ldots . n \text { terms }\right)-(1+1+1+\ldots . . n \text { terms })\right]$
$=\frac{8}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]$
$=\frac{8}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
$=\frac{80}{81}\left(10^{n}-1\right)-\frac{8}{9} n$
જો $x > 1,\;y > 1,z > 1$ એ સમગુણોતર શ્નેણીમાં હોયતો $\frac{1}{{1 + {\rm{In}}\,x}},\;\frac{1}{{1 + {\rm{In}}\,y}},$ $\;\frac{1}{{1 + {\rm{In}}\,z}}$ એ _______ માં છે.
શ્રેણી $0.9 + .09 + .009 …$ ના $100$ પદોનો સરવાળો શું થાય?
સમગુણોતર શ્રેણીનાં પ્રથમ અને બીજા પદનો સરવાળો $12$ હોય અને ત્રીજા અને ચોથા પદ નો સરવાળો $48$ છે. જો સમગુણોતર શ્રેણીના ક્રમિક પદો ધન અને ૠણ હોય તો શ્રેણીનું પ્રથમ પદ મેળવો.
$0.5737373...... = $
જો સમગુણોત્તર શ્રેણીનું $(m + n)$ મું પદ $9$ અને $(m - n)$ મું પદ $4$ હોય, તો $m^{th}$ મું પદ કયું હશે ?