જે સમગુણોત્તર શ્રેણીનાં ચોથા, દસમાં અને સોળમાં પદ અનુક્રમે $x, y$ અને $z$ હોય, તો સાબિત કરી કે $x,$ $y, z$ સમગુણોત્તર શ્રેણીમાં છે

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ be the first term and $r$ be the common ratio of the $G.P.$

According to the given condition,

$a_{4}=a r^{3}=x$       .......$(1)$

$a_{10}=a r^{9}=y$      .......$(2)$

$a_{16}=a r^{15}=z$      .......$(3)$

Dividing $(2)$ by $(1),$ we obtain

$\frac{y}{x}=\frac{a r^{9}}{a r^{3}} \Rightarrow \frac{y}{x}=r^{6}$

Dividing $(3)$ by $(2),$ we obtain

$\frac{z}{y}=\frac{a r^{15}}{a r^{9}} \Rightarrow \frac{z}{y}=r^{6}$

$\therefore \frac{y}{x}=\frac{z}{y}$

Thus, $x, y, z$ are in $G.P.$

Similar Questions

સમગુણોત્તર શ્રેણીના પ્રથમ દસ પદોનો સરવાળો $S_1$  છે અને તે પછીના દસ પદોનો ($11$  થી $20$) સરવાળો $S_2$  છે. તો સામાન્ય ગુણોત્તર કેટલો થશે ?

નીશ્ચાયક $\Delta \, = \,\left| {\begin{array}{*{20}{c}}
  a&b&{a\alpha \, + \,b\,} \\ 
  b&c&{b\alpha \, + \,c} \\ 
  {a\alpha \, + \,b}&{b\alpha \, + \,c}&0 
\end{array}} \right| \, = \,0\,$  થાય, જો $=................$

બૅક્ટરિયાના ઉછેરમાં તેની સંખ્યા દર કલાકે બમણી થાય છે. જો શરૂઆતમાં બૅક્ટરિયાની સંખ્યા $30$ હોય, તો $2$ કલાક, $4$ કલાક, અને $n$ માં કલાકે બૅક્ટરિયાની સંખ્યા શોધો.

અહી $a$ અને $b$ ની શુન્યેતર વાસ્તવિક કિમતોની બે જોડો છે  i.e. $(a_1,b_1)$ અને $(a_2,b_2)$  જ્યાં $2a+b,a-b,a+3b$ એ સમગુણોત્તર શ્રેણીના ત્રણ ક્રમિક પદો હોય તો $2(a_1b_2 + a_2b_1) + 9a_1a_2$ ની કિમત મેળવો 

ધારોકે ધન સંખ્યાઓ $a_1, a_2, a_3, a_4$ અને $a_5$ સમગુણોત્તર શ્રેણીમાં છે.ધારોકે તેમના મધ્યક અને વિચરણ અનુક્રમે $\frac{31}{10}$ અન $\frac{m}{n}$ છે,જ્યાં $m$ અને $n$ પરસ્પર અવિભાજ્ય છે.જો તેમના વ્યસ્ત નું મધ્યક $\frac{31}{40}$ અને $a_3+a_4+a_5=14$ હોય, તો $m+n=..........$

  • [JEE MAIN 2023]