જો $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^{9}}+\ldots . .+\frac{10240}{3}=2^{ n } \cdot m$, કે જ્યાં $m$ એ અયુગ્મ છે તો $m . n$ ની કિમંત મેળવો.
$15$
$14$
$13$
$12$
જેના સામાન્ય ગુણોત્તર $3$ હોય તેવી $n$ પદવાળી સમગુણોત્તર શ્રેણીનાં $n$ પદનો સરવાળો $364$ હોય અને તેનું છેલ્લું પદ $243$ હોય, તો $n = ……$
નીશ્ચાયક $\Delta \, = \,\left| {\begin{array}{*{20}{c}}
a&b&{a\alpha \, + \,b\,} \\
b&c&{b\alpha \, + \,c} \\
{a\alpha \, + \,b}&{b\alpha \, + \,c}&0
\end{array}} \right| \, = \,0\,$ થાય, જો $=................$
શ્રેણી $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$. નું કેટલામું પદ $\frac{1}{19683}$ થાય ?
જો સમગુણોતર શ્રેણીનું ત્રીજુ પદએ $4$ હોય તો પ્રથમ પાંચ પદોનો ગુણાકાર મેળવો.
$7, 7^2, 7^3, ….7^n $ નો સમગુણોત્તર મધ્યક ..... છે.