Let $A = \{ (x,\,y):y = {e^x},\,x \in R\} $, $B = \{ (x,\,y):y = {e^{ - x}},\,x \in R\} .$ Then
Find the union of each of the following pairs of sets :
$A=\{a, e, i, o, u\} B=\{a, b, c\}$
If $A$ and $B$ are disjoint, then $n(A \cup B)$ is equal to
Find the intersection of each pair of sets :
$X=\{1,3,5\} Y=\{1,2,3\}$
If $X = \{ {4^n} - 3n - 1:n \in N\} $ and $Y = \{ 9(n - 1):n \in N\} ,$ then $X \cup Y$ = . . . . .