3 and 4 .Determinants and Matrices
easy

यदि $\left[\begin{array}{cc}
2 a+b & a-2 b \\
5 c-d & 4 c+3 d
\end{array}\right]=\left[\begin{array}{cc}
4 & -3 \\
11 & 24
\end{array}\right]$ हो तो $a, b, c,$ तथा $d$ के मान ज्ञात कीजिए

A

$a=1$,  $b=2$,  $c=3$,  $d=4$

B

$a=1$,  $b=4$,  $c=3$,  $d=4$

C

$a=1$,  $b=2$,  $c=5$,  $d=4$

D

$a=8$,  $b=2$,  $c=3$,  $d=4$

Solution

Solution By equality of two matrices, equating the corresponding elements, we get

$\begin{array}{ll}
2 a+b=4 & 5 c-d=11 \\
a-2 b=-3 & 4 c+3 d=24
\end{array}$

Solving these equations, we get

$a=1$,  $b=2$,  $c=3$ and  $d=4$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.