- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
यदि $\left[\begin{array}{cc}
2 a+b & a-2 b \\
5 c-d & 4 c+3 d
\end{array}\right]=\left[\begin{array}{cc}
4 & -3 \\
11 & 24
\end{array}\right]$ हो तो $a, b, c,$ तथा $d$ के मान ज्ञात कीजिए
A
$a=1$, $b=2$, $c=3$, $d=4$
B
$a=1$, $b=4$, $c=3$, $d=4$
C
$a=1$, $b=2$, $c=5$, $d=4$
D
$a=8$, $b=2$, $c=3$, $d=4$
Solution
Solution By equality of two matrices, equating the corresponding elements, we get
$\begin{array}{ll}
2 a+b=4 & 5 c-d=11 \\
a-2 b=-3 & 4 c+3 d=24
\end{array}$
Solving these equations, we get
$a=1$, $b=2$, $c=3$ and $d=4$
Standard 12
Mathematics
Similar Questions
medium