Five numbers are in $A.P.$, whose sum is $25$ and product is $2520 .$ If one of these five numbers is $-\frac{1}{2},$ then the greatest number amongst them is

  • [JEE MAIN 2020]
  • A

    $\frac{21}{2}$

  • B

    $27$

  • C

    $16$

  • D

    $7$

Similar Questions

Let $S_n$ be the sum to n-terms of an arithmetic progression $3,7,11, \ldots \ldots$. . If $40<\left(\frac{6}{\mathrm{n}(\mathrm{n}+1)} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}\right)<42$, then $\mathrm{n}$ equals

  • [JEE MAIN 2024]

If the first, second and last terms of an $A.P.$ be $a,\;b,\;2a$ respectively, then its sum will be

If the sum of $n$ terms of an $A.P.$ is $nA + {n^2}B$, where $A,B$ are constants, then its common difference will be

Let $a _1, a _2, \ldots, a _{2024}$ be an Arithmetic Progression such that $a _1+\left( a _5+ a _{10}+ a _{15}+\ldots+ a _{2020}\right)+ a _{2024}= 2233$. Then $a_1+a_2+a_3+\ldots+a_{2024}$ is equal to ________

  • [JEE MAIN 2025]

If $\log _{3} 2, \log _{3}\left(2^{x}-5\right), \log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in an arithmetic progression, then the value of $x$ is equal to $.....$

  • [JEE MAIN 2021]