8. Sequences and Series
hard

Five numbers are in $A.P.$, whose sum is $25$ and product is $2520 .$ If one of these five numbers is $-\frac{1}{2},$ then the greatest number amongst them is

A

$\frac{21}{2}$

B

$27$

C

$16$

D

$7$

(JEE MAIN-2020)

Solution

Let the A.P is

$a-2 d, a-d, a, a+d, a+2 d$

$\because \operatorname{sum}=25 \Rightarrow \mathrm{a}=5$

Product $=2520$

$\left(25-4 d^{2}\right)\left(25-d^{2}\right)=504$

$4 \mathrm{d}^{4}-125 \mathrm{d}^{2}+121=0$

$\Rightarrow \mathrm{d}^{2}=1, \frac{121}{4}$

$\Rightarrow \mathrm{d}=\pm 1, \pm \frac{11}{2}$

$\mathrm{d}=\pm 1$ is rejected because none of the term can be $\frac{-1}{2}$

$\Rightarrow \mathrm{d}=\pm \frac{11}{2}$

$\Rightarrow$ AP will be $-6,-\frac{1}{2}, 5, \frac{21}{2}, 16$

Largest term is $16$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.