- Home
- Standard 11
- Mathematics
8. Sequences and Series
hard
Five numbers are in $A.P.$, whose sum is $25$ and product is $2520 .$ If one of these five numbers is $-\frac{1}{2},$ then the greatest number amongst them is
A
$\frac{21}{2}$
B
$27$
C
$16$
D
$7$
(JEE MAIN-2020)
Solution
Let the A.P is
$a-2 d, a-d, a, a+d, a+2 d$
$\because \operatorname{sum}=25 \Rightarrow \mathrm{a}=5$
Product $=2520$
$\left(25-4 d^{2}\right)\left(25-d^{2}\right)=504$
$4 \mathrm{d}^{4}-125 \mathrm{d}^{2}+121=0$
$\Rightarrow \mathrm{d}^{2}=1, \frac{121}{4}$
$\Rightarrow \mathrm{d}=\pm 1, \pm \frac{11}{2}$
$\mathrm{d}=\pm 1$ is rejected because none of the term can be $\frac{-1}{2}$
$\Rightarrow \mathrm{d}=\pm \frac{11}{2}$
$\Rightarrow$ AP will be $-6,-\frac{1}{2}, 5, \frac{21}{2}, 16$
Largest term is $16$
Standard 11
Mathematics