- Home
- Standard 11
- Mathematics
8. Sequences and Series
hard
Let $S_n$ be the sum to n-terms of an arithmetic progression $3,7,11, \ldots \ldots$. . If $40<\left(\frac{6}{\mathrm{n}(\mathrm{n}+1)} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}\right)<42$, then $\mathrm{n}$ equals
A
$9$
B
$8$
C
$10$
D
$7$
(JEE MAIN-2024)
Solution
$S_n= 3+7+11+………… n $ terams
${n}{2}(6+(n-1) 4)=3 n+2 n^2-2 n $
$ =2 n^2+n $
$ \sum_{k=1}^n S_k=2 \sum_{k=1}^n K^2+\sum_{k=1}^n K $
$ =2 \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2} $
$=n(n+1)\left[\frac{2 n+1}{3}+\frac{1}{2}\right]$
$=\frac{n(n+1)(4 n+5)}{6} $
Rightarrow $40<\frac{6}{n(n+1)} \sum_{k=1}^n S_k<42 $
$ 40<4 n+5<42 $
$ 35<4 n<37 $
$ n=9$
Standard 11
Mathematics