જો ${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ....{x^{2016}} = \sum\limits_{i = 0}^{2016} {{a_i\,}{\,x^i}} $ જ્યાં  $x\, \in \,R\,,\,x\, \ne \, - 1$  તો $a_{17}$ ની કિમત મેળવો. 

  • [JEE MAIN 2016]
  • A

    $\frac{{2017\,!\,}}{{17\,!\,2000\,!}}$

  • B

    $\frac{{2016\,!\,}}{{17\,!\,1999\,!}}$

  • C

    $\frac{{2016\,!\,}}{{16\,!}}$

  • D

    $\frac{{2017\,!\,}}{{2000\,!}}$

Similar Questions

જો $x + y = 1$, તો $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ = . . .

$(1-x)^{100}$ ના દ્વિપદી વિસ્તરણમાં પ્રથમ $50$ પદોના સહગુણકોનો સરવાળો $.......$ છે.

  • [JEE MAIN 2023]

$(1 + t^2)^{25} (1 + t^{25}) (1 + t^{40}) (1 + t^{45}) (1 + t^{47})$  ના વિસ્તરણમાં $t^{50}$ નો સહગુણક મેળવો 

અહી ${ }^{n} C_{r}$ એ $(1+ x )^{ n }$ ના વિસ્તરણમાં $x^{r}$ નો સહગુણક દર્શાવે છે. જો $\sum_{ k =0}^{10}\left(2^{2}+3 k \right){ }^{ n } C _{ k }=\alpha .3^{10}+\beta \cdot 2^{10}, \alpha, \beta \in R$ તો $\alpha+\beta$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $\sum_{r=1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !),$ તો  $\alpha$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]