7.Binomial Theorem
hard

$\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ = . . .

A

${e^2}$

B

$e$

C

${e^2} - 1$

D

$e - 1$

Solution

(c) $\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ……. + {\,^n}{C_n}}}{{{\,^n}{P_n}}}} $

$ = \frac{{{\,^1}{C_0} + {\,^1}{C_1}}}{{{\,^1}{P_1}}} + \frac{{{\,^2}{C_0} + {\,^2}{C_1} + {\,^2}{C_2}}}{{{\,^2}{P_2}}} + \frac{{^3{C_0} + {\,^3}{C_1} + {\,^3}{C_2} + {\,^3}{C_3}}}{{{\,^3}{P_3}}}$+…

$ = \frac{{{2^1}}}{{1!}} + \frac{{{2^2}}}{{2!}} + \frac{{{2^3}}}{{3!}} + …….$ $\left( {1 + \frac{2}{{1!}} + \frac{{{2^2}}}{{2!}} + \frac{{{2^3}}}{{3!}} + …….} \right) – 1$

$ = {e^2} – 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.