$p , q \in R , q > 0$, के लिए वास्तविक मान फलन $f ( x )=( x - p )^2- q , x \in R$ का विचार कीजिए। माना $a _1, a _2, a _3$ तथा $a _4$ एक धनात्मक सार्व अंतर की संमातर श्रेढ़ी में हैं तथा इनका माध्य $p$ है। यदि $i=1,2,3,4$ के लिए $\left|f\left(a_i\right)\right|=500$ है, तो $f ( x )=0$ के मूलों का निरपेक्ष अंतर है $...........$
$50$
$60$
$70$
$80$
प्रथम $n$ सम संख्याओं का योग, प्रथम $n$ विषम संख्याओं के योग का होगा
माना $a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n}, \ldots .$ एक समांतर श्रेढ़ी में हैं। यदि $a_{3}+a_{7}+a_{11}+a_{15}=72$ है, तो उसके प्रथम $17$ पदों का योग बराबर है
यदि $\frac{1}{3}$ और $\frac{1}{{24}}$ के मध्य दो समान्तर माध्य पद ${A_1}$ व ${A_2}$ हों, तब ${A_1}$ व ${A_2}$ का मान होगा
किसी समांतर श्रेणी का $p$ वाँ, $q$ वाँ $r$ वाँ पद क्रमशः $a, b, c$ हैं, तो सिद्ध कीजिए
$(q-r) a+(r-p) b+(p-q) c=0$
समीकरण $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ के लिए $x$ का मान है