यदि समीकरण $a{x^2} + bx + c = 0$ के मूलों का योग उनके व्युत्क्रमों के वर्गों के योगफल के बराबर है, तो $b{c^2},\;c{a^2},\;a{b^2}$ होंगे
समान्तर श्रेणी में
गुणोत्तर श्रेणी में
हरात्मक श्रेणी में
इनमें से कोर्इ नहीं
किसी समूह की $50$ सँख्याओं का समान्तर माध्य $38$ है। यदि समूह की दो संख्यायें $55$ तथा $45$ हटा दी जायें, तब शेष संख्याओं के समूह का समान्तर माध्य है
यदि $a_m$ समान्तर श्रेणी के $m$ वें पद को प्रदर्शित करता हो, तब $a_m$ का मान होगा
समान्तर श्रेणी के तीन क्रमागत पद इस प्रकार हैं कि उनका योग $18$ तथा उनके वर्गों का योग $158$ है तब इस श्रेणी का महत्तम पद होगा
माना $a_1, a_2, \ldots ., a_n, \ldots$ वास्तविक संख्याओं की एक समांतर श्रेढ़ी है। यदि इस श्रेढ़ी के प्रथम पाँच पदों के योग का, प्रथम नौ पदों के योग से अनुपात $5: 17$ है तथा $110 < a_{15} < 120$ है, तो इस श्रेढ़ी के प्रथम दस पदों का योग है -
यदि किसी श्रेणी के प्रथम $n$ पदों का योगफल $5{n^2} + 2n$ हो, तो उसका द्वितीय पद है|