$a \in C$ માટે,ધારોકે $A =\{z \in C: \operatorname{Re}( a +\overline{ z }) > \operatorname{Im}(\bar{a}+z)\}$ અને $B=\{z \in C: \operatorname{Re}(a+\bar{z}) < \operatorname{Im}(\bar{a}+z)\}$.તો આપેલા બે વિધાનો
$(S1)$ : જો $\operatorname{Re}(a), \operatorname{Im}(a) > 0$, હોય તો ગણ $A$ તમામ વાસ્તવિક સંખ્યાઆ સમાવે છે, અને
$(S2)$ : જો $\operatorname{Re}(a), \operatorname{Im}(a) < 0$, હોય તો ગણ $B$ તમામ વાસ્તવિક સંખ્યાઓ સમાવે છે.
ફકત $(S1)$ સાચું છે.
બંને ખોટા છે.
ફકત $(S2)$ સાચું છે.
બંને સાચા છે.
ધારોકે $A=\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1-i \sin \theta}\right.$ શુદ્ધ કાલ્પનિક છે $\}$. તો $A$ ના ધટકોનો સરવાળો $........$ છે.
જો $\mathrm{z}_1$ અને $\mathrm{z}_2$ બે સંકર સંખ્યા માટે $\mathrm{z}_1+\mathrm{z}_2=5$ અને $z_1^3+z_2^3=20+15 i$ છે. તો $\left|z_1^4+z_2^4\right|=$__________.
જો $z$ અને $w$ એ બે સંકર સંખ્યા છે કે જેથી $w=z \bar{z}-2 z+2,\left|\frac{z+i}{z-3 i}\right|=1$ અને $\operatorname{Re}(w)$ ની કિમંત ન્યૂનતમ થાય છે . તો $n \in N$ ની ન્યૂનતમ કિમંત મેળવો કે જેથી $w ^{ n }$ એ વાસ્તવિક સંખ્યા થાય .
બે સંકર સંખ્યા ${z_1}$ અને ${z_2}$ માટે આપેલ પૈકી . . . સત્ય છે .
સંકર સંખ્યા $z$ ની એવી કેટલી કિમતો મળે કે જેથી $\left| z \right| + z - 3\bar z = 0$ થાય?