- Home
- Standard 11
- Mathematics
4-1.Complex numbers
easy
If for complex numbers ${z_1}$ and ${z_2}$, $arg({z_1}/{z_2}) = 0,$ then $|{z_1} - {z_2}|$ is equal to
A
$|{z_1}| + |{z_2}|$
B
$|{z_1}| - |{z_2}|$
C
$||{z_1}| - |{z_2}||$
D
$0$
Solution
(c) We have $|{z_1} – {z_2}{|^2}$
$ = |{z_1}{|^2} + |{z_2}{|^2} – 2|{z_1}||{z_2}|\cos ({\theta _1} – {\theta _2})$
where ${\theta _1} = arg({z_1})$ and ${\theta _2} = arg({z_2})$
Since $arg\,{z_1} – arg\,{z_2} = 0$
$|{z_1} – {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} – 2|{z_1}||{z_2}|$
$ = {(|{z_1}| – |{z_2}|)^2}$
==> $|{z_1} – {z_2}| = ||{z_1}| – |{z_2}||$
Standard 11
Mathematics