The minimum value of $|2z - 1| + |3z - 2|$is

  • A

    $0$

  • B

    $1/2$

  • C

    $1/3$

  • D

    $2/3$

Similar Questions

The values of $z$for which $|z + i|\, = \,|z - i|$ are

${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$ is equal to 

  • [AIEEE 2012]

If $z_1$ and $z_2$ are two unimodular complex numbers that satisfy $z_1^2 + z_2^2 = 5,$ then ${\left( {{z_1} - {{\bar z}_1}} \right)^2} + {\left( {{z_2} - {{\bar z}_2}} \right)^2}$ is equal to -

If  $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that   $| z_1 | = | z_2 |=1$ and  $R({z_1}\overline {{z_2}} ) = 0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies

Let $z$ be a purely imaginary number such that ${\mathop{\rm Im}\nolimits} (z) < 0$. Then $arg\,(z)$ is equal to