Basic of Logarithms
medium

For $x \ne 0,{\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$

A

$1$

B

$x$

C

Does not exist

D

None of these

Solution

(a) ${\left( {{{{x^l}} \over {{x^m}}}} \right)^{{l^2} + lm + {m^2}}}{\left( {{{{x^m}} \over {{x^n}}}} \right)^{{m^2} + nm + {n^2}}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{{n^2} + nl + {l^2}}}$

$={({x^{l – m}})^{({l^2} + lm + {m^2})}}{({x^{m – n}})^{{m^2} + nm + {n^2}}}$${({x^{n – l}})^{{n^2} + nl + {l^2}}}$

$={x^{{l^3} – {m^3}}}.{x^{{m^3} – {n^3}}}.{x^{{n^3} – {l^3}}}$=${x^{{l^3} – {m^3} + {m^3} – {n^3} + {n^3} – {l^3}}} = {x^0}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.