${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $
$1 + \sqrt 5 + \sqrt {(10)} + \sqrt 2 $
$1 + \sqrt 5 - \sqrt {(10)} + \sqrt 2 $
$1 + \sqrt 5 + \sqrt {10} - \sqrt 2 $
$1 - \sqrt 5 - \sqrt 2 + \sqrt {(10)} $
If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and ${b^2} = ac$ then $x + z = $
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.
${a^{m{{\log }_a}n}} = $
If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then