Basic of Logarithms
medium

${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $

A

$1 + \sqrt 5 + \sqrt {(10)} + \sqrt 2 $

B

$1 + \sqrt 5 - \sqrt {(10)} + \sqrt 2 $

C

$1 + \sqrt 5 + \sqrt {10} - \sqrt 2 $

D

$1 - \sqrt 5 - \sqrt 2 + \sqrt {(10)} $

Solution

(c) ${{12} \over {3 + \sqrt 5 – 2\sqrt 2 }} = {{12\,[(3 – 2\sqrt 2 ) – \sqrt 5 ]} \over {[(3 – 2\sqrt 2 ) + \sqrt 5 ][(3 – 2\sqrt 2 ) – \sqrt 5 ]}}$

$ = {{12\,(3 – 2\sqrt 2 – \sqrt 5 )} \over {{{(3 – 2\sqrt 2 )}^2} – 5}} = {{12\,(3 – 2\sqrt 2 – \sqrt 5 )} \over {17 – 12\sqrt 2 – 5}}$

$ = {{(3 – 2\sqrt 2 – \sqrt 5 )} \over {1 – \sqrt 2 }} = {{(\sqrt 5 + 2\sqrt 2 – 3)\,(\sqrt 2 + 1)} \over {(\sqrt 2 – 1)\,(\sqrt 2 + 1)}}$

$ = {{\sqrt {10} + 4 – 3\sqrt 2 + \sqrt 5 + 2\sqrt 2 – 3} \over {2 – 1}} = 1 + \sqrt 5 + \sqrt {10} – \sqrt 2 $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.