${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $

  • A

    $1 + \sqrt 5 + \sqrt {(10)} + \sqrt 2 $

  • B

    $1 + \sqrt 5 - \sqrt {(10)} + \sqrt 2 $

  • C

    $1 + \sqrt 5 + \sqrt {10} - \sqrt 2 $

  • D

    $1 - \sqrt 5 - \sqrt 2 + \sqrt {(10)} $

Similar Questions

If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and ${b^2} = ac$ then $x + z = $

Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are

Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.

${a^{m{{\log }_a}n}} = $

If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then