${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $
$1 + \sqrt 5 + \sqrt {(10)} + \sqrt 2 $
$1 + \sqrt 5 - \sqrt {(10)} + \sqrt 2 $
$1 + \sqrt 5 + \sqrt {10} - \sqrt 2 $
$1 - \sqrt 5 - \sqrt 2 + \sqrt {(10)} $
$\root 4 \of {(17 + 12\sqrt 2 )} = $
The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $
If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$
Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),} $ then