જો સુરેખ સમીકરણ સંહતી $2 x+3 y-z=-2$ ; $x+y+z=4$ ; $x-y+|\lambda| z=4 \lambda-4$ (જ્યાં $\lambda \in R$ ) ને ઉંકેલ ન હોય, તો..........
$\lambda=7$
$\lambda=-7$
$\lambda=8$
$\lambda^{2}=1$
ધારો કે $S _1$ અને $S _2$ એવા દરેક $a \in R$ - \{0\}ના ગણો દર્શાવે છે જેના માટે સુરેખ સમીકરણ સંહતિ
$a x+2 a y-3 a z=1$
$(2 a+1) x+(2 a+3) y+(a+1) z=2$
$(3 a+5) x+(a+5) y+(a+2) z=3$
ને અનુક્રમે અનન્ય ઉકેલ તથા અસંખ્ય ઉકેલો હોય. તો
જો $\alpha \neq \mathrm{a}, \beta \neq \mathrm{b}, \gamma \neq \mathrm{c}$ અને $\left|\begin{array}{lll}\alpha & \mathrm{b} & \mathrm{c} \\ \mathrm{a} & \beta & \mathrm{c} \\ \mathrm{a} & \mathrm{b} & \gamma\end{array}\right|=0$,હોય, તો $\frac{a}{\alpha-a}+\frac{b}{\beta-b}+\frac{\gamma}{\gamma-c}$ .........................
જો $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$ હોય, તો $x$ નું મૂલ્ય શોધો.
અહી $\theta \in\left(0, \frac{\pi}{2}\right)$ આપેલ છે. જો સમીકરણ સંહતિ
$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$
ને શૂન્યતર ઉકેલ ધરાવે છે તો $\theta$ ની કિમંત મેળવો.
કોઈ $\alpha, \beta \in R$ માટે નીચેની સમીકરણ સંહતિ ધ્યાને લો. $\alpha x+2 y+z=1$ ; $2 \alpha x+3 y+z=1$ ; $3 x+\alpha y+2 z=\beta$ ; તો નીચેના પૈકી ક્યુ સાચું નથી ?