The general solution of ${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ is

  • A

    $\theta = n\pi + {( - 1)^{n + 1}}\frac{\pi }{3},\theta = n\pi ,n \in Z$

  • B

    $\theta = n\pi ,n \in Z$

  • C

    $\theta = n\pi + {( - 1)^{n + 1}}\frac{\pi }{3},n \in Z$

  • D

    $\theta = \frac{{n\pi }}{2},n \in Z$

Similar Questions

The real roots of the equation $cos^7x\,  +\,  sin^4x\,  =\,  1$  in the interval $(-\pi, \pi)$ are

The only value of $x$ for which ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ holds, is

$\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ then $\theta = $

The solution of the equation $cos^2\theta\, +\, sin\theta\, + 1\, =\, 0$ lies in the interval

If $\tan m\theta = \tan n\theta $, then the general value of $\theta $ will be in