The general solution of ${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ is
$\theta = n\pi + {( - 1)^{n + 1}}\frac{\pi }{3},\theta = n\pi ,n \in Z$
$\theta = n\pi ,n \in Z$
$\theta = n\pi + {( - 1)^{n + 1}}\frac{\pi }{3},n \in Z$
$\theta = \frac{{n\pi }}{2},n \in Z$
The real roots of the equation $cos^7x\, +\, sin^4x\, =\, 1$ in the interval $(-\pi, \pi)$ are
The only value of $x$ for which ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ holds, is
$\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ then $\theta = $
The solution of the equation $cos^2\theta\, +\, sin\theta\, + 1\, =\, 0$ lies in the interval
If $\tan m\theta = \tan n\theta $, then the general value of $\theta $ will be in