If $S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\begin{array}{*{20}{c}}
0&{\cos {\mkern 1mu} x}&{ - \sin {\mkern 1mu} x}\\
{\sin {\mkern 1mu} x}&0&{\cos {\mkern 1mu} x}\\
{\cos {\mkern 1mu} x}&{\sin {\mkern 1mu} x}&0
\end{array}} \right| = 0} \right\},$ then $\sum\limits_{x \in S} {\tan \left( {\frac{\pi }{3} + x} \right)} $ is equal to

  • [JEE MAIN 2017]
  • A

    $4 + 2\sqrt 3 $

  • B

    $-2 + \sqrt 3 $

  • C

    $-2 - \sqrt 3 $

  • D

    $-4 - 2\sqrt 3 $

Similar Questions

The equation ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$ is solvable for

If $\cos A\sin \left( {A - \frac{\pi }{6}} \right)$ is maximum, then the value of $A$ is equal to

If $\cos 7\theta = \cos \theta - \sin 4\theta $, then the general value of $\theta $ is

The number of solutions to $\sin x=\frac{6}{x}$ with $0 \leq x \leq 12 \pi$ is

  • [KVPY 2009]

The number of solutions of the equation $\sin (9 x)+\sin (3 x)=0$ in the closed interval $[0,2 \pi]$ is

  • [KVPY 2019]