Gujarati
Trigonometrical Equations
hard

$x \in(0, \pi)$ के लिये समीकरण $\sin x+2 \sin 2 x-\sin 3 x=3$ के

A

अनन्त (infinitely many) हल है।

B

तीन (three) है।

C

एक (one) हल है।

D

कोई हल नहीं है (no solution)

(IIT-2014)

Solution

$\sin x+2 \sin 2 x-\sin 3 x=3 $

$\sin x\left(1+2 \cos x-3+4 \sin ^2 x\right)=3 $

$\left(4 \sin ^2 x+2 \cos x-2\right)=\frac{3}{\sin x} $

$2-4 \cos ^2 x+2 \cos x=\frac{3}{\sin x} $

$\frac{9}{4}-\left(2 \cos x-\frac{1}{2}\right)^2=\frac{3}{\sin x} $

$\text { L.H.S. } \leq \frac{9}{4} \quad \quad \text { R.H.S. } \geq 3$

No solution.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.