3.Trigonometrical Ratios, Functions and Identities
medium

यदि $A = 133^\circ ,$ तब $\;2\cos \frac{A}{2} =$

A

$ - \sqrt {1 + \sin A} - \sqrt {1 - \sin A} $

B

$ - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} $

C

$\sqrt {1 + \sin A} - \sqrt {1 - \sin A} $

D

$\sqrt {1 + \sin A} + \sqrt {1 - \sin A} $

Solution

$A = {133^o}$ के लिए $\frac{A}{2} = {66.5^o}$

$\Rightarrow$ $\sin \frac{A}{2} > \cos \frac{A}{2} > 0$

अत:  $\sqrt {1 + \sin A}  = \sin \frac{A}{2} + \cos \frac{A}{2}$…..$(i)$

तथा $\sqrt {1 – \sin A}  = \sin \frac{A}{2} – \cos \frac{A}{2}$…..$(ii)$

समी $(i)$ में से $(ii)$ को घटाने पर,

$2\cos \frac{A}{2} = \sqrt {1 + \sin A}  – \sqrt {1 – \sin A} $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.