If $\cos \left( {\alpha + \beta } \right) = \frac{4}{5}$ and $\sin \left( {\alpha - \beta } \right) = \frac{5}{{13}}$,where $0 \le \alpha ,\beta \le \frac{\pi }{4}$ . Then $\tan 2\alpha =$ 

  • [AIEEE 2010]
  • [IIT 1979]
  • A

    $\frac{{16}}{{63}}$

  • B

    $\frac{{56}}{{33}}$

  • C

    $\frac{{28}}{{33}}$

  • D

    None of these

Similar Questions

If $A + B + C = \pi \,(A,B,C > 0)$ and the angle $C$ is obtuse then

Prove that $\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$

If $\tan \theta = t,$ then $\tan 2\theta + \sec 2\theta = $

For $A = 133^\circ ,\;2\cos \frac{A}{2}$ is equal to

$\frac{{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 2}}} \right)\,\,.\,\,\cos \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)\,\, - \,\,{{\sin }^3}\,\left( {{\textstyle{{7\pi } \over 2}}\,\, - \,\,x} \right)}}{{\cos \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 2}}} \right)\,\,.\,\,\tan \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)}}$ when simplified reduces to :