If $\cos \left( {\alpha + \beta } \right) = \frac{4}{5}$ and $\sin \left( {\alpha - \beta } \right) = \frac{5}{{13}}$,where $0 \le \alpha ,\beta \le \frac{\pi }{4}$ . Then $\tan 2\alpha =$
$\frac{{16}}{{63}}$
$\frac{{56}}{{33}}$
$\frac{{28}}{{33}}$
None of these
If $A + B + C = \pi \,(A,B,C > 0)$ and the angle $C$ is obtuse then
Prove that $\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$
If $\tan \theta = t,$ then $\tan 2\theta + \sec 2\theta = $
For $A = 133^\circ ,\;2\cos \frac{A}{2}$ is equal to
$\frac{{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi \over 2}}} \right)\,\,.\,\,\cos \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)\,\, - \,\,{{\sin }^3}\,\left( {{\textstyle{{7\pi } \over 2}}\,\, - \,\,x} \right)}}{{\cos \,\,\left( {x\,\, - \,\,{\textstyle{\pi \over 2}}} \right)\,\,.\,\,\tan \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)}}$ when simplified reduces to :