3.Trigonometrical Ratios, Functions and Identities
medium

જો $A = 133^\circ ,$ તો $\;2\cos \frac{A}{2}  = . . . .$

A

$ - \sqrt {1 + \sin A} - \sqrt {1 - \sin A} $

B

$ - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} $

C

$\sqrt {1 + \sin A} - \sqrt {1 - \sin A} $

D

$\sqrt {1 + \sin A} + \sqrt {1 - \sin A} $

Solution

(c) For $A = {133^o},\frac{A}{2} = {66.5^o}$

==> $\sin \frac{A}{2} > \cos \frac{A}{2} > 0$

Hence, $\sqrt {1 + \sin A} = \sin \frac{A}{2} + \cos \frac{A}{2}$…..$(i)$

and $\sqrt {1 – \sin A} = \sin \frac{A}{2} – \cos \frac{A}{2}$…..$(ii)$

Subtract $(ii)$ from $(i)$, $2\cos \frac{A}{2} = \sqrt {1 + \sin A} – \sqrt {1 – \sin A} $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.