કોઈક વાસ્તવિક અચળાંક $a$ માટે વિધેય $f: R-\{-a\} \rightarrow R$ તથા $f(x)=\frac{a-x}{a+x}$ હોય વધારામાં ધારો કે કોઈક વાસ્તવિક સંખ્યા $x \neq- a$ અને $f( x ) \neq- a$ માટે $( fof )( x )= x$ થાય તો $f\left(-\frac{1}{2}\right)$ ની કિમત શોધો
$\frac{1}{3}$
$3$
$-3$
$-\frac{1}{3}$
ધારોકે $f(x)=2 x^{2}-x-1$ અને $S =\{n \in Z :|f(n)| \leq 800\}$ છે, તો $\sum_{n \in S} f(n)$ નું મૂલ્ય ............ છે.
જો વિધેય $f : R \rightarrow R$ એ માટે $3f(2x^2 -3x + 5) + 2f(3x^2 -2x + 4) = x^2 -7x + 9\ \ \ \forall x \in R$ વ્યાખ્યાયિત હોય તો $f(5)$ ની કિમત મેળવો.
જો $A= \{1, 2, 3, 4\}$ અને સંબંધ $R : A \to A$ ; $R = \{ (1, 1), (2, 3), (3, 4), ( 4, 2) \}$ આપેલ હોય તો આપેલ પૈકી સત્ય વિધાન મેળવો.
અહી $f(x)=a x^{2}+b x+c$ છે કે જેથી $f(1)=3, f(-2)$ $=\lambda$ અને $f (3)=4$. જો $f (0)+ f (1)+ f (-2)+ f (3)=14$ હોય તો $\lambda$ ની કિમંત $...$ થાય.
નીચેનામાંથી ક્યુ વિધાન સાચુ છે?