કોઈક વાસ્તવિક અચળાંક $a$ માટે વિધેય $f: R-\{-a\} \rightarrow R$ તથા $f(x)=\frac{a-x}{a+x}$ હોય વધારામાં ધારો કે કોઈક વાસ્તવિક સંખ્યા $x \neq- a$ અને $f( x ) \neq- a$ માટે $( fof )( x )= x$ થાય તો $\left(-\frac{1}{2}\right)$ ની કિમત શોધો 

  • [JEE MAIN 2020]
  • A

    $\frac{1}{3}$

  • B

    $3$

  • C

    $-3$

  • D

    $-\frac{1}{3}$

Similar Questions

ધારોકે $f: R \rightarrow R$ એવો વિધેય છે કે જ્યાં $f(x)=\frac{x^2+2 x+1}{x^2+1}$ તો

  • [JEE MAIN 2023]

ધારોકે $f: R \rightarrow R$ એ કોઈ $m$ માટે વ્યાખ્યાયિત એવુ વિધેય છે કે જયાં $f(x)=\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x+m-2)\}$ અને $f$ નો વિસ્તાર $[0,2]$ છે. તો $m$ નું મૂલ્ય $.........$ છે.

  • [JEE MAIN 2023]

જો શૂન્યતર વાસ્તવિક સંખ્યા $b$ અને $c$ છે કે જેથી $min \,f\left( x \right) > \max \,g\left( x \right)$, કે જ્યાં  $f\left( x \right) = {x^2} + 2bx + 2{c^2}$ અને $g\left( x \right) = {-x^2} - 2cx + {b^2}$$\left( {x \in R} \right)$; તો  $\left| {\frac{c}{b}} \right|$ એ . . . અંતરાલ માં છે .

  • [JEE MAIN 2014]

જો $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ અને $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;તો $S :$

  • [JEE MAIN 2016]

ધારોકે $f$ એ પ્રત્યેક $f(x+y)=f(x)+f(y)$ માટે $x, y \in N$ અને $f(1)=\frac{1}{5}$ નું સમાધાન કરતુ વિધેય છે. જો $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$ હોય, તો $m=..........$

  • [JEE MAIN 2023]