ધારો કે $x$ એ $3$ ઘટકોવાળા ગણ $A$ થી $5$ ઘટકોવાળા ગણ $B$ પરના એક-એક વિધેયોની કુલ સંખ્યા દર્શાવે છે. અને $y$ એ ગણ $A$ થી ગણ $A \times B$ પરના એક-એક વિધેયોની કુલ સંખ્યા દર્શાવે છે. તો :
$y=273 x$
$2 y=91 x$
$y=91 x$
$2 y=273 x$
વિધેય ${\sin ^{ - 1}}\sqrt x $ એ .. . . અંતરાલમાં વ્યખ્યાયિત છે.
ધારો કે $f : R \rightarrow R$ એ સતત વિધેય છે કે જેથી $f(3 x)-f(x)=x$ છે જો $f(8)=7$ હોય તો $f(14)$ ની કિમંત મેળવો.
જો $f(x) = \frac{x}{{x - 1}} = \frac{1}{y}$, તો $f(y) = $
સમિકરણ ${x^{1 + {{\log }_{10}}x}} = 100000x$ ના ઉકેલોોનો ગુુુણાકાર ....... થાય.
ધારો કે $a,b,c\; \in R.$ જો $f\left( x \right) = a{x^2} + bx + c$ હોય કે જેથી $a + b + c = 3$ અને $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy,$ $\forall x,y \in R,$ તો $\mathop \sum \limits_{n = 1}^{10} f\left( n \right)$ની કિંમત મેળવો.