किसी प्रक्षेप्य के लिए प्रक्षेपण कोणों $\left(45^{\circ}-\theta\right)$ और $\left(45^{\circ}\right.+ \theta)$ पर, इनके द्वारा तय की गई क्षतिज परास का अनुपात है
$2:1$
$1:1$
$2:3$
$1:2$
प्रक्षेप्य के उच्चतम बिन्दु पर उसकी
$x - y$ तल ( $x$ क्षैतिज है एवं $y$ ऊपर की ओर उर्ध्व है) में मूल बिंदु से एक प्रक्षेप को $x$-अक्ष से $\alpha$ कोण बनाते हुए प्रक्षेपित किया जाता है। यदि मूल बिंदु से प्रक्षेपक की दूरी, $r=\sqrt{x^2+y^2}$, को $x$ के सापेक्ष अवलेखन किया जाए, तो $\alpha_1$ एवं $\alpha_2$ प्रक्षेपण कोणों के लिए $r ( x )$ दो अलग-अलग वक्र देता है (सलग्न चित्र देखिए) $\mid \alpha_1$ कोण के लिए $r ( x ), x$ के साथ क्रमशः बढ़ता रहता है। जबकि $\alpha_2$ कोण के लिए $r ( x )$ पहले बढ़ते हुए उच्चतम बिंदु पर पहुँचता है, फिर कम होने लगता है और एक न्यूनतम बिंदु पर पहुँचने के उपरान्त फिर से बढ़ने लगता है। इन दोनों व्यवहारों के बीच संक्रमण (switch) एक खास कोण $\alpha_{ c }\left(\alpha_1 < \alpha_{ c } < \alpha_2\right)$ पर होता है $\mid \alpha_{ c }$ का मान क्या है ? [वायु कर्षण को नगण्य मान लीजिए $\mid y(x)=x \tan \alpha-\frac{1}{2} \frac{\sec ^2 a}{v_0^2} x^2$, जहाँ $v_0$ प्रक्षेप की प्रारंभिक चाल है तथा $g$ गुरुत्वीय त्वरण है
किसी प्रक्षेप्य की क्षैतिज परास इसकी अधिकतम ऊँचाई की $4\sqrt 3 $ गुनी है। इसके प्रक्षेपण कोण का मान ......... $^o$ है
$45°$ के प्रक्षेपण कोण के लिये किसी दिये गये वेग से प्रक्षेपित वस्तु की परास अधिकतम होती है। यह परास न्यूनतम होगी यदि प्रक्षेपण कोण ......... $^o$ है
रेलगाड़ी की खिड़की से एक पत्थर छोड़ा जाता है। यदि रेलगाड़ी क्षैतिज सीधी पटरियों पर जा रही है, तो पत्थर का पथ जमीन पर टकराते समय होगा