3-1.Vectors
medium

Show that the area of the triangle contained between the vectors $a$ and $b$ is one half of the magnitude of $a \times b .$

Option A
Option B
Option C
Option D

Solution

Consider two vectors $\overrightarrow{ OK }=|\vec{a}| {\text { and }} \overrightarrow{ OM }=|\vec{b}|,$ inclined at an angle $\theta$

In $\Delta$ OMN, we can write the relation:

$\sin \theta=\frac{M N}{O M}=\frac{M N}{|\vec{b}|}$

$MN =|\vec{b}| \sin \theta$

$|\vec{a} \times \vec{a}|=|\vec{a}||\vec{b}| \sin \theta$

$= OK \cdot MN \times \frac{2}{2}$

$=2 \times$ Area of $\Delta OMK$

$\therefore$ Area of $\Delta OMK ^{=}=\frac{1}{2}|\vec{a} \times \vec{b}|$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.