10-2. Parabola, Ellipse, Hyperbola
medium

અતિવલય ${x^2}{\sec ^2}\theta - {y^2}cose{c^2}\theta = 1$ માટે $\theta $ ચલ હોય તો . . . . . ની કિંમત $\theta $ પર આધારિત નથી.

A

નાભિ

B

નિયામિકા

C

ઉત્કેન્દ્રતા

D

નાભિલંબની લંબાઇ

(AIEEE-2007)

Solution

Given equation is comparing on $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

We get

$a^{2}=\cos ^{2} a$ and $b^{2}=\sin ^{2} a$

$\therefore \sin ^{2} a+\cos ^{2} a=a^{2}+b^{2}$

$\Rightarrow e-\frac{\overline{a^{2}+b^{2}}}{a^{2}}$

Now,

$=\frac{\overline{1}}{\cos ^{2} a}=\frac{1}{\cos a}$

Now, foci $a e=\cos a \cdot \frac{1}{\cos \alpha}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.